МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ И СТРОИТЕЛЬНОЙ МЕХАНИКИ

ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ В БАЛКАХ

Методические указания и задания к расчетно-графической работе по курсу "Сопротивление материалов" для студентов 2-го курса всех строительных специальностей очной формы обучения

Краснодар 2006

ВНЕШНИЕ И ВНУТРЕННИЕ СИЛЫ В ТВЕРДОМ ТЕЛЕ 1.1 ОБЩИЕ ПОНЯТИЯ О ВНУТРЕННИХ СИЛОВЫХ ФАКТОРАХ

Рисунок 1.1 – Главный вектор и главный момент внутренних сил

Рассмотрим твердое деформируемое тело, находящееся в равновесии под действием системы внешних сил (рис. 1.1, а). В результате действия внешних нагрузок тело деформируется, т.е. изменяет свои первоначальные размеры и форму. Деформации приводят к изменению расстояний между его отдельными частицами (атомами и молекулами). В поперечных сечениях тела появляются дополнительные силы взаимодействия между отдельными его частями. Эти дополнительные силы по отношению к твердому телу являются внутренними.

Для определения внутренних сил применим к рассматриваемому телу *метод сечений*. Рассечем твердое тело плоскостью на две части A и B (рис. 1.1, a). Действие одной части на другую заменим системой внутренних сил, распределенных по всему сечению (рис. 1.1, δ). Как всякую систему сил, указанные усилия можно привести к одной точке O(обычно к центру тяжести попе-

речного сечения), в результате чего получим главный вектор и главный момент внутренних сил (рис. 1.1, в).

Необходимо отметить, что замена системы внутренних усилий, распределенных некоторым образом по поперечному сечению деформируемого твердого тела (рис. 1.1, δ), главным вектором и главным моментом внутренних сил (рис. 1.1, ϵ) является эквивалентной только в статическом смысле. Очевидно, что распределенные внутренние усилия будут вызывать деформации сечения, которые будут существенно отличаться от деформаций, вызванных действием главного момента и главного вектора, поэтому эти схемы в геометрическом смысле неэквивалентны.

Рассмотрим прямой брус постоянного сечения, загруженный взаимно уравновешенной системой сил (рис. 1.2, a). Введем прямоугольную декартову систему координат x, y, z. В курсе «Сопротивление материалов» принято использовать *правостороннюю систему координат* (при взгляде с положительного направления оси z ось x должна совмещаться с осью yпротив часовой стрелки). В дальнейшем ось z всегда будем совмещать с направлением внешней нормали к поперечному сечению, а ось x направлять навстречу нашему взгляду.

Рассечем брус сечением и мысленно отбросим часть *B*. Действие отброшенной части бруса *B* заменим системой распределенных внутренних усилий, действующих по поперечному сечению части *A*, которые сведем к главному моменту и главному вектору (рис. 1.2, δ).

Разложим главный вектор и главный момент внутренних усилий по координатным осям (рис. 1.2, δ). В результате мы получим шесть внутренних усилий в рассматриваемом сечении: три силы (N_z , Q_x и Q_y) и три момента (M_x , M_y и M_z). Усилие N_z , вызывающее деформацию бруса в направлении оси z, называется продольной силой. Усилия Q_x и Q_y вызывают сдвиги по осям x и y соответственно и называются поперечными силами. Момент M_z вызывает кручение стержня, поэтому называется крутящим моментом. Моменты M_x и M_y вызывают изгиб в главных плоскостях инерции бруса zOy и zOx, поэтому называются изгибающими моментами. Совокупность указанных сил и моментов принято называть внутренними силовыми факторами (BCФ).

Рисунок 1.2 – Внутренние силовые факторы в поперечном сечении бруса

В частных случаях загружения бруса в его поперечных сечениях могут возникать множество комбинации внутренних силовых факторов, вызывающих различные виды деформации бруса. В курсе «Сопротивление материалов» рассматривается *простое* и *сложное сопротивление* бруса. К простому сопротивлению относят те виды деформаций, при которых в поперечном сечении бруса возникают внутренние силовые факторы, действующие в одной плоскости. Сложным сопротивлением бруса называются такие виды деформации, при которых внутренние силовые факторы, возникающие в поперечном сечении, действуют в различных плоскостях. К простому сопротивлению прямого бруса относятся следующие виды его деформации:

- одноосное растяжение или сжатие (в поперечном сечении действует только продольная сила N_z);
- простой сдвиг или срез (в поперечном сечении действует поперечная сила Q_x или Q_y);
- кручение (в поперечном сечении действует крутящий момент M_z);
- чистый изгиб (в поперечном сечении бруса действует только изгибающий момент M_x или M_y);
- поперечный изгиб (в поперечном сечении бруса действует изгибающий момент M_x и соответствующая ему поперечная сила Q_y или момент M_y и сила Q_x).
- К сложному сопротивлению прямого бруса относятся:
- внецентренное растяжение или сжатие (в поперечном сечении бруса действуют изгибающие моменты M_x и M_y, а также продольная сила N_z);
- косой изгиб (в поперечном сечении бруса действуют изгибающие моменты M_x и M_y);
- совместное действие кручения и изгиба (в сечении действуют изгибающие моменты M_x и M_y, а также крутящий момент M_z) и т.д.

1.2 КЛАССИФИКАЦИЯ ВНЕШНИХ НАГРУЗОК

Нагрузки, действующие на брус, могут быть как *сосредоточенными* (приложенными в определенных сечениях бруса) так и *распределенными* по его длине. К сосредоточенным нагрузкам так и распределенные нагрузки входят силы и моменты (пары сил), которые могут быть как изгибающими, так и крутящими. Внешние нагрузки можно классифицировать следующим образом:

- *осевые* (направленные вдоль оси бруса *Oz*);

 F_i – осевые сосредоточенные силы; $q_z(z)$ – осевая распределенная нагрузка.

поперечные (действующие в вертикальной плоскости *zOy* или горизонтальной плоскости *zOx*);

 F_i – сосредоточенные поперечные силы;

- *M_i* сосредоточенные изгибающие моменты;
- $q_y(z)$ распределенная поперечная нагрузка;
- *m_x(z)* распределенный изгибающий момент.

- *скручивающие* (вращающие относительно оси бруса **О**z)

Рисунок 1.5 – Скручивающие нагрузки

Распределенные нагрузки характеризуются *интенсивностью*, которую можно изобразить графически. Интенсивность распределенной нагрузки может быть либо постоянной, либо изменяться по произвольному закону. Интенсивность распределенной нагрузки на плоскости изображается в виде некоторой геометрической фигуры.

Рисунок 1.6 – Замена распределенной нагрузки ее равнодействующей

Распределенную нагрузку можно привести к *равнодействующей*, точка приложения которой совпадает с центром тяжести эпюры нагрузки. Методика определения положения центра тяжести плоских фигур была изложена в разделе «Геометрические характеристики плоских сечений». Величина равнодействующей распределенной поперечной нагрузки вычисляется как определенный интеграл от закона изменения нагрузки на участке

ее приложения. Для распределенной нагрузки, изменяющейся по произвольному закону (рис. 1.6, а) имеем: $R = \int_{a}^{b} q_{y}(z) dz$. Вычисление равнодействующей для нагрузок, имеющих постоянную интенсивность (равномерно распределенные нагрузки) значительно упрощается: $R = q_{y}l$ (рис. 1.6, б).

2 ЭПЮРЫ ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ 2.1 ОБЩИЕ СВЕДЕНИЯ ОБ ЭПЮРАХ

В инженерной практике необходимо четко представлять связь между внешними нагрузками и возникающими в элементах конструкций внутренними силами, напряжениями и перемещениями. Указанные зависимости являются некоторыми функциями координат *x*, *y* или *z* и могут быть изображены на плоскости в виде графиков, называемых эпюрами внутренних силовых факторов, напряжений или перемещений соответственно.

Рассмотрим построение эпюр внутренних силовых факторов, которые являются функциями координаты z, определяющей текущее положение поперечного сечения бруса: $N_z=f(z)$, $Q_x=f(z)$, $Q_y=f(z)$, $M_x=f(z)$, $M_y=f(z)$, $M_z=f(z)$, $M_z=$

Построение эпюр внутренних силовых факторов необходимо для выполнения прочностных расчетов (подбора необходимых размеров поперечного сечения бруса из условий прочности при соответствующих видах его деформации). Эпюры помогают установить положение «опасных» сечений, где возникают максимальные значения внутренних усилий и, следовательно, действуют экстремальные нормальные или касательные напряжения. Построение эпюр ведется известным методом сечений.

Рисунок 2.1 – Правило знаков ВСФ

Введем следующие правила для определения знаков внутренних силовых факторов (рис. 2.1) для наиболее частого случая загружения бруса, когда все внешние усилия действуют в вертикальной плоскости *zOy*. Та-

ким образом, положительная продольная сила N_z направлена от поперечного сечения (растягивает брус) и совпадает с положительным направлением координатной оси Oz. Положительная поперечная сила Q_y должна вращать рассматриваемую часть бруса по часовой стрелке и совпадает с положительным направлением оси Oy. Изгибающий момент M_x будет считаться положительным, если растягивает нижние волокна бруса.

Эпюры строятся на оси бруса и заштриховываются перпендикулярно нулевой линии. Внутри каждой эпюры, за исключением эпюр изгибающих моментов, ставится соответствующий знак, который обычно обводится небольшой окружностью. Ординаты эпюр изгибающих моментов откладываются со стороны растянутых волокон бруса. Данное правило справедливо для всех строительных специальностей. Для всех других специальностей ординаты эпюр изгибающих моментов откладываются со стороны сжатых волокон бруса. Знаки на эпюрах изгибающих моментов обычно не ставят.

Приступая к построению эпюр внутренних силовых факторов, брус разбивают на грузовые участки. *Грузовым участком* называют часть оси бруса, заключенную:

- между точками приложения внешних сосредоточенных сил или моментов, включая опорные реакции;
- между точками, ограничивающими участки приложения распределенных нагрузок или моментов;
- между точками, где происходит излом оси бруса или изменяются размеры его поперечного сечения.

В пределах грузового участка функции внутренних силовых факторов не должны иметь изломов или разрывов, т.е. в указанных пределах они являются гладкими, дифференцируемыми и интегрируемыми функциями.

2.2 ОБЩИЙ ПОРЯДОК ПОСТРОЕНИЯ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ

Рассмотрим порядок построения эпюр ВСФ в балке. Балкой называется брус, имеющий прямолинейную ось и воспринимающий поперечные нагрузки.

При построении эпюр внутренних силовых факторов пользуются методом сечений. Суть этого метода состоит в том, что в пределах каждого грузового участка проводится поперечное сечение и отбрасывается левая или правая часть бруса. Действие отброшенной части бруса заменяют внутренними силами и моментами, приложенными в сечении. Для их определения используют уравнения статики.

Определяем величину опорных реакций балки (рис. 2.2), возникающих от действия внешних нагрузок:

$$\begin{split} \sum m_{B} &= 0; \quad M_{1} + F \cdot 3 + \frac{q \cdot 2^{2}}{2} - M_{2} - R_{A} \cdot 4 = 0; \\ R_{A} &= \frac{20 + 10 \cdot 3 + \frac{4 \cdot 2^{2}}{2} - 10}{4} = 12 \text{ (KH)}; \\ \sum m_{A} &= 0; \quad M_{1} - F \cdot 1 - q \cdot 2 \cdot 3 - M_{2} + R_{B} \cdot 4 = 0; \\ R_{B} &= \frac{10 + 10 \cdot 1 + 4 \cdot 2 \cdot 3 - 20}{4} = 6 \text{ (KH)}. \end{split}$$

Проверка:

$$\sum y = 0;$$
 $F + q \cdot 2 - R_A - R_B = 0;$ $10 + 4 \cdot 2 - 12 - 6 = 0,$

следовательно, опорные реакции заданной балки определены верно.

Рассмотрим поперечное сечение балки, проведенное в пределах первого грузового участка. Начало координат помещаем в левой крайней точке балки. Ось *z* направляем вдоль оси балки, ось *x* – навстречу нашему

взгляду, а ось у направляем вниз, чтобы получить правостороннюю систему координат. Отбрасываем правую часть балки. В сечении показываем внутренние силовые факторы (изгибающий момент M_x и поперечную силу Q_y), действующие в положительном направлении. Координата z_1 , определяющая положение рассматриваемого сечения, изменяется в

следующих пределах $0 \le z_1 \le 1$ м. Записываем статические уравнения равновесия для отсеченной части балки:

$$\sum y = 0; \quad Q_y - R_A = 0; \quad Q_y = R_A = 12 \quad \text{kH} = const;$$

$$\sum m_x = 0; \quad M_x - R_A \cdot z_1 + M_1 = 0; \quad M_x = R_A \cdot z_1 - M_1.$$

Из полученных выражений следует, что эпюра поперечных сил Q_y в пределах первого грузового участка представляет собой прямую, параллельную горизонтальной оси и не зависит от текущей координаты z, а эпюра изгибающих моментов M_x линейно зависит от координаты z. Для построения эпюры M_x достаточно определить ее ординаты на границах грузового участка:

$$z_1 = 0$$
; $M_x = R_A \cdot z_1 - M_1 = 12 \cdot 0 - 20 = -20$ кНм;
 $z_1 = 1$ м; $M_x = R_A \cdot z_1 - M_1 = 12 \cdot 1 - 20 = -8$ кНм.

Положительные значения эпюры Q_y откладываем выше нулевой линии. Эпюра изгибающих моментов M_x отрицательна в пределах всего первого грузового участка, следовательно, растягиваются верхние волокна балки, и ординаты указанной эпюры откладываем выше нулевой линии. Строим эпюры Q_y и M_x в пределах первого грузового участка (рис. 2.2).

Рассмотрим поперечное сечение балки, проведенное в пределах второго грузового участка. Начало координат оставляем в левой крайней точке балки. Отбрасываем правую часть балки. В сечении показываем внутренние силовые факторы (изгибающий момент M_x и поперечную силу Q_y), действующие в положительном направлении. Координата z_2 , определяющая положение рассматриваемого сечения, изменяется в пределах второго грузового участка, но отсчитывается от ранее выбранного начала координат, следовательно, $l \le z_2 \le 2$ м. Записываем статические уравнения равновесия для отсеченной части балки:

$$\sum y = 0; \quad Q_y - R_A + F = 0; \quad Q_y = R_A - F = 12 - 10 = 2 \quad \text{kH} = const;$$

$$\sum m_x = 0; \quad M_x - R_A \cdot z_2 + M_1 + F(z_2 - 1) = 0; \quad M_x = R_A \cdot z_2 - M_1 - F(z_2 - 1).$$

Из полученных выражений следует, что эпюра поперечных сил Q_y в пределах второго грузового участка представляет собой прямую, параллельную горизонтальной оси и не зависит от текущей координаты z, а эпюра изгибающих моментов M_x линейно зависит от координаты z. Для построения эпюры M_x достаточно определить ее ординаты на границах грузового участка:

$$z_2 = 1$$
 m; $M_x = R_A \cdot z_2 - M_I - F(z_2 - 1) = 12 \cdot 1 - 20 - 10 \cdot (1 - 1) = -8$ кHм;
 $z_2 = 2$ m; $M_x = R_A \cdot z_2 - M_I - F(z_2 - 1) = 12 \cdot 2 - 20 - 10 \cdot (2 - 1) = -6$ кHм.

Строим эпюры Q_y и M_x в пределах второго грузового участка (рис. 2.2).

Анализируя ранее выполненные расчеты можно сделать вывод, что при увеличении количества грузовых участков от начала координат до рассматриваемого сечения запись уравнений статики значительно усложняется. Поэтому при построении эпюр внутренних силовых факторов часто применяют такой прием как изменение начала координат. Этот прием помогает существенно уменьшить трудоемкость вычислений.

Рассмотрим поперечное сечение балки, проведенное в пределах четвертого грузового участка. Начало координат располагаем в крайней правой точке балки. Ось zнаправляем вдоль оси балки, ось x – навстречу нашему взгляду, а ось y направляем вверх, чтобы получить правостороннюю систему координат. Отбрасываем левую часть балки. В сечении показываем внутренние силовые

факторы (изгибающий момент M_x и поперечную силу Q_y), действующие в положительном направлении. Координата z_4 , определяющая положение рассматриваемого сечения, изменяется в следующих пределах $0 \le z_4 \le 1$ м. Записываем статические уравнения равновесия отсеченной части балки:

$$\sum y = 0; \ Q_y = 0; \ Q_y = 0 = const;$$

$$\sum m_x = 0; \ M_x + M_2 = 0; \ M_x = -M_2 = -10 \text{ kHm} = const.$$

Из полученных выражений следует, что эпюра поперечных сил Q_y в пределах четвертого грузового участка совпадает с осью z, а эпюра изги-

бающих моментов M_{x} параллельна горизонтальной оси и не зависит от текущей координаты z. Строим эпюры Q_y и M_x в пределах четвертого грузового участка (рис. 2.2).

Рассмотрим поперечное сечение балки, проведенное в пределах третьего грузового участка. Начало координат оставляем в крайней правой

точке балки. Ось z направляем вдоль оси балки, $_{q}=4\kappa H/_{M}$ $M_{2}=10\kappa H_{M}$ ось x – навстречу нашему взгляду, а ось y направляем вверх, чтобы получить правостороннюю систему координат. Отбрасываем левую часть балки. В сечении показываем внутренние силовые факторы (изгибающий момент M_x и поперечную силу Q_v), действующие в положи-

тельном направлении. Координата z₃, определяющая положение рассматриваемого сечения, изменяется в пределах третьего участка, но отсчитывается от принятого ранее начала координат: $l \le z_3 \le 3$ м. Записываем статические уравнения равновесия для отсеченной части балки:

$$\sum y = 0; \quad Q_y + R_B - q(z_3 - 1) = 0; \quad Q_y = q(z_3 - 1) - R_B;$$

$$\sum m_x = 0; \quad M_x + M_2 - R_B(z_3 - 1) + q(z_3 - 1)^2 / 2 = 0;$$

$$M_x = R_B(z_3 - 1) - M_2 - q(z_3 - 1)^2 / 2.$$

Из полученных выражений следует, что эпюра поперечных сил Q_{y} в пределах третьего грузового участка изменяется по линейному закону, а эпюра изгибающих моментов M_x зависит от квадрата координаты z и представляет собой квадратную параболу. Строим эпюры Q_{y} и M_{x} в пределах четвертого грузового участка (рис. 2.2). Для построения эпюр Q, и *М*_x необходимо определить их ординаты на границах грузового участка:

$$z_{3} = 1 \text{ m}; \quad Q_{y} = q(z_{3} - 1) - R_{B} = 4(1 - 1) - 6 = -6 \text{ kH};$$

$$M_{x} = R_{B}(z_{3} - 1) - M_{2} - q(z_{3} - 1)^{2} / 2 = 6(1 - 1) - 10 - q(1 - 1)^{2} / 2 = -10 \text{ kHm}.$$

$$z_{3} = 3 \text{ m}; \quad Q_{y} = q(z_{3} - 1) - R_{B} = 4(3 - 1) - 6 = 2 \text{ kH};$$

$$M_{x} = R_{B}(z_{3} - 1) - M_{2} - q(z_{3} - 1)^{2} / 2 = 6(3 - 1) - 10 - 4(3 - 1)^{2} / 2 = -6 \text{ kHm}.$$

Исходя из полученных значений видно, что эпюра Q_v в пределах третьего грузового участка меняет знак и пересекает нулевую линию. Как будет доказано далее под нулевым значением на эпюре поперечных сил Q_{ν} на эпюре изгибающих моментов M_{\star} имеется экстремум. Используя простейшие геометрические соотношения можно установить, что нулевая точка эпюры Q_y находится на расстоянии $z_3 = 2,5$ м от начала координат. Вычисляем величину внутренних силовых факторов в указанном сечении:

$$z_{3} = 2,5$$
 m; $Q_{y} = q(z_{3} - 1) - R_{B} = 4(2,5-1) - 6 = 0$;

 $M_{x} = R_{B}(z_{3}-1) - M_{2} - q(z_{3}-1)^{2} / 2 = 6(2,5-1) - 10 - 4(2,5-1)^{2} / 2 = -5,5 \text{ KHM}.$

По полученным значениям строим эпюры Q_y и M_x в пределах третьего грузового участка (рис. 2.2). таким образом мы рассмотрели все грузовые участки заданной балки и получили окончательный вид эпюр по-перечных сил Q_y и изгибающих моментов M_x .

2.3 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РАВНОВЕСИЯ БРУСА С ПРЯМОЛИНЕЙНОЙ ОСЬЮ

Если внешние нагрузки, действующие на брус и все реакции в его связях (опорные реакции) известны, то внутренние усилия можно определить из уравнений статики, рассматривая равновесие отсеченной части бруса. Выделим из бруса элементарную часть, ограниченную двумя поперечными сечениями, проведенными на расстоянии z и z+dz от начала координат (рис. 2.3). Брус считаем загруженным погонной распределенной

Рисунок 2.3 – Равновесие элемента прямого бруса

нагрузкой q, погонным распределенным моментом m, некоторой системой внешних сосредоточенных сил F и сосредоточенных моментов M.

Все внешние нагрузки действуют в плоскостях, не совпадающих ни с одной главных плоскостей инерции прямолинейного бруса. Выделенный элемент бруса специально выбран таким образом, что в его пределы не попадают сосредоточенные силы и моменты.

Рассмотрим равновесие элементарной части бруса длиной *dz*. Изобразим выделенный элемент бруса и приложенные к нему внешние нагрузки в проекции на плоскость *zOy*. Ввиду малости участка *dz* интенсивности

проекций внешней распределенной нагрузки q на координатные оси q_y и q_z , а также интенсивность распределенного момента m_x будем считать постоянными (рис. 2.2). Под действием внешних нагрузок в поперечных сечениях бруса возникают внутренние силовые факторы N_z , Q_y и M_x , получающие приращения на длине dz равные dN_z , dQ_y и dM_x соответственно. Для их определения запишем следующие уравнения статики:

$$\sum z = 0; \quad -N_z + (N_z + dN_z) + q_z dz = 0;$$

$$\sum y = 0; \quad -Q_y + (Q_y + dQ_y) + q_y dz = 0;$$

$$\sum m_{xB} = 0; \quad -M_x + (M_x + dM_x) - Q_y dz + q_y dz (dz/2) + m_x dz = 0.$$

Пренебрегая слагаемым второго порядка малости в третьем уравнении, сокращая члены с противоположными знаками и деля на *dz*, получаем дифференциальные уравнения равновесия бруса для плоскости *zOy*.

$$\frac{dN_z}{dz} = -q_z; \tag{2.1}$$

$$\frac{dQ_y}{dz} = -q_y; \qquad (2.2)$$

$$\frac{dM_x}{dz} = Q_y - m_x. \tag{2.3}$$

Если изгибная деформация бруса происходит в двух главных плоскостях инерции, то необходимо рассмотреть равновесие выделенного элемента в плоскости zOx. По аналогии с вышеизложенным запишем следующие уравнения статики:

$$\sum x = 0; \quad -Q_x + (Q_x + dQ_x) + q_x dz = 0;$$

$$\sum m_{yB} = 0; \quad -M_y + (M_y + dM_y) - Q_x dz + q_x dz (dz/2) + m_y dz = 0.$$

Следовательно,

$$\frac{dQ_x}{dz} = -q_x; \qquad (2.4)$$

$$\frac{dM_y}{dz} = Q_x - m_y. \tag{2.5}$$

Последнее, шестое, уравнение равновесия получим из суммы моментов относительно оси *Oz*:

$$\sum m_{x} = 0; \qquad -M_{x} + (M_{x} + dM_{x}) + m_{x}dz = 0.$$

Окончательно получаем

$$\frac{dM_z}{dz} = -m_z. \tag{2.6}$$

Уравнения (2.1) – (2.6), полученные выше, называются *дифференци*альными уравнениями равновесия прямого бруса.

2.4 ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ РАВНОВЕСИЯ БРУСА

Будем считать, что функции внутренних силовых факторов $N_z(z)$, $Q_x(z)$, $Q_y(z)$, $M_x(z)$, $M_y(z)$ и $M_z(z)$ в пределах выделенного элемента dz бруса с прямолинейной осью (рис. 2.2) являются полностью дифференцируемыми и интегрируемыми.

Умножим левую и правую части ранее полученного дифференциального уравнения (2.1) на *dz*

$$dN_z = -q_z dz \,. \tag{2.7}$$

Рисунок 2.4 – Геометрический смысл определенного интеграла

Возьмем определенный интеграл в границах от *a* до *b* отдельно от левой и

правой части уравнения (2.7). Здесь *а* и *b* являются координатами точек, ограничивающих рассматриваемый грузовой участок:

$$\int_{a}^{b} dN_{z} = -\int_{a}^{b} q_{z} dz .$$
 (2.8)

Левая часть равенства (2.8) будет равна:

$$\int_{a}^{b} dN_{z} = N_{z}(b) - N_{z}(a) = \Delta N_{z} \Big|_{a}^{b}$$

Рассмотрим правую часть равенства (2.8). Геометрической интерпретацией определенного интеграла функции f(z) на участке от a до b (рис. 2.3) является площадь фигуры S, заключенной между осью Oz и кривой f(z). Окончательно получаем:

$$-\int_{a}^{b} q_{z} dz = -S_{q_{z}}\Big|_{a}^{b}$$

Таким образом

$$\Delta N_z \Big|_a^b = -S_{q_z} \Big|_a^b.$$
(2.9)

Отсюда можно сделать следующий вывод: приращение продольной силы N_z в пределах грузового участка равно равнодействующей осевой распределенной нагрузки q_z на этом же грузовом участке. Знак «минус» показывает, что распределенная нагрузка q_z , действующая в положительном направлении оси Oz, вызывает отрицательное приращение силы N_z .

Рассмотрим дифференциальные уравнения равновесия бруса для плоскости *zOy* (2.2) и (2.3). После выполнения преобразований получаем

$$\Delta Q_{y} \Big|_{a}^{b} = -S_{q_{y}} \Big|_{a}^{b}, \qquad (2.10)$$

Следовательно, приращение поперечной силы Q_y в пределах грузового участка равно равнодействующей поперечной распределенной нагрузки q_y на том же грузовом участке. Знак «минус» указывает на то, что распределенная нагрузка, действующая в положительном направлении оси Oy, создает отрицательное приращение продольной силы Q_y .

Рассмотрим частный случай, когда интенсивность распределенного изгибающего момента m_x на рассматриваемом участке равна нулю:

$$\Delta M_x \Big|_a^b = S_{\mathcal{Q}_y} \Big|_a^b. \tag{2.11}$$

Приращение изгибающего момента M_x в пределах грузового участка равно площади эпюры поперечных сил Q_y на том же грузовом участке. При перемещении сечения слева направо знак приращения момента M_x соответствует знаку суммарной площади эпюры Q_y .

В общем случае, когда интенсивность распределенного изгибающего момента m_x не равна нулю, получаем

$$\Delta M_{x} \Big|_{a}^{b} = S_{\mathcal{Q}_{y}} \Big|_{a}^{b} - S_{m_{x}} \Big|_{a}^{b}.$$
(2.12)

Рассмотрим дифференциальные уравнения равновесия бруса для плоскости *zOx* (2.4) и (2.5). После выполнения преобразований получаем

$$\Delta Q_x \Big|_a^b = -S_{q_x}\Big|_a^b, \qquad (2.13)$$

Следовательно, приращение поперечной силы Q_x в пределах грузового участка равно равнодействующей поперечной распределенной нагрузки q_x на том же грузовом участке. Знак «минус» указывает на то, что распределенная нагрузка, действующая в положительном направлении оси Ox, создает отрицательное приращение поперечной силы Q_x .

Рассмотрим частный случай, когда интенсивность распределенного изгибающего момента m_{y} на рассматриваемом участке равна нулю:

$$\Delta M_{y} \Big|_{a}^{b} = S_{\mathcal{Q}_{x}} \Big|_{a}^{b}.$$
(2.14)

Приращение изгибающего момента M_y в пределах грузового участка равно площади эпюры поперечных сил Q_x на том же грузовом участке. При перемещении сечения слева направо знак приращения момента M_y соответствует знаку суммарной площади эпюры поперечных сил Q_x .

В общем случае, когда интенсивность распределенного изгибающего момента m_v не равна нулю, получаем

$$\Delta M_{y} \Big|_{a}^{b} = S_{\mathcal{Q}_{x}} \Big|_{a}^{b} - S_{m_{y}} \Big|_{a}^{b}.$$
(2.15)

Рассмотрим последнее, шестое, уравнение равновесия (2.6). После выполнения преобразований получаем

$$\Delta M_{z} \Big|_{a}^{b} = -S_{m_{z}} \Big|_{a}^{b}.$$
(2.16)

Приращение крутящего момента M_{z} в пределах грузового участка равно равнодействующему крутящему моменту от действия распределенных крутящих моментов m_{z} на том же грузовом участке. Знак «минус» указывает на то, что распределенный крутящий момент, приложенный в положительном направлении, создает отрицательное приращение крутящего момента M_{z} .

2.5 ПРАВИЛА КОНТРОЛЯ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ

На основании анализа ранее построенных эпюр внутренних силовых факторов (рис. 2.2), дифференциальных и интегральных уравнений равновесия бруса с прямолинейной осью можно записать следующие правила контроля эпюр ВСФ:

- в сечении, где к брусу приложена сосредоточенная осевая сила, на эпюре продольных сил N_z имеется скачок (разрыв), равный по величине приложенной силе;
- в сечении, где к брусу приложена сосредоточенная сила, действующая в вертикальной или горизонтальной плоскостях, на эпюре поперечных сил Q_y или Q_x соответственно имеется *скачок (разрыв)*, равный по величине приложенной силе;
- в сечении, где к брусу приложена сосредоточенная сила, действующая в вертикальной или горизонтальной плоскостях, на эпюре изгибающих моментов M_x или M_y соответственно имеется излом, направленный в сторону действия силы;
- в сечении, где к брусу приложен сосредоточенный изгибающий момент, действующий в вертикальной или горизонтальной плоскостях, на эпюре изгибающих моментов M_x или M_y соответственно имеется скачок (разрыв), равный действующему моменту;

- в сечении, где к брусу приложен сосредоточенный изгибающий момент, действующий в вертикальной или горизонтальной плоскостях, на эпюре поперечных сил Q_y или Q_x соответственно скачков или разрывов не наблюдается;
- на участках, где к брусу приложены равномерно распределенные поперечные нагрузки, действующие в вертикальной (q_y) или горизонтальной плоскостях (q_x), эпюры поперечных сил Q_y или Q_x соответственно изменяются по линейному закону. Величина приращения поперечной силы на указанном участке равна равнодействующей приложенной поперечной нагрузки q_y или q_x.
- на участках, где на брус действуют равномерно распределенные поперечные нагрузки, действующие в вертикальной или горизонтальной плоскостях, эпюры изгибающих моментов M_x или M_y соответственно изменяются по квадратной параболе. Выпуклость эпюры изгибающих моментов на указанном участке направлена в сторону действия равномерно распределенной нагрузки q_y или q_x;
- если в пределах рассматриваемого грузового участка эпюры поперечных сил Q_y или Q_x пересекают нулевую линию, то под нулевой точкой на эпюрах изгибающих моментов M_x или M_y соответственно имеется локальный экстремум;
- если в пределах некоторого грузового участка эпюра Q_y или Q_x постоянна и отлична от нуля, то эпюра изгибающих моментов M_x или M_y соответственно изменятся по линейному закону;
- если в пределах некоторого грузового участка эпюра поперечных сил Q_y или Q_x постоянна и равна нулю, то эпюра изгибающих моментов M_x или M_y соответственно является постоянной;
- на участках, где к брусу приложены равномерно распределенные изгибающие моменты, действующие в вертикальной или горизонтальной плоскостях, эпюры изгибающих моментов M_x или M_y соответственно изменяются по линейному закону. Величина приращения момента M_x или M_y на указанном участке равно равнодействующей приложенного распределенного момента m_x или m_y;
- на участках, где к брусу приложены равномерно распределенные продольные нагрузки, эпюра продольных сил N_z изменяется по линейному закону. Величина приращения силы N_z на указанном участке равна равнодействующей приложенной распределенной продольной нагрузки q_z;
- на участках, где к брусу приложены равномерно распределенные скручивающие моменты m_z, эпюра крутящих моментов M_z изменяется по линейному закону. Величина приращения момента M_z на указанном участке равна равнодействующей приложенного распределенного момента m_z.

3. ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ БЕЗ СОСТАВЛЕНИЯ УРАВНЕНИЙ СТАТИКИ

Процесс построения эпюр в балках можно значительно упростить, если воспользоваться полученными правилами контроля эпюр ВСФ и интегральными уравнения равновесия бруса. Как и ранее расчет начинаем с определения величины опорных реакций.

$$\sum m_{A} = 0; \quad M_{2} + F_{1} \cdot 4 - M_{1} - F_{2} \cdot 7 - R_{B} \cdot 6 = 0;$$

$$R_{B} = \frac{20 - 10 + 10 \cdot 4 - 20 \cdot 7}{6} = -15 \,(\text{\kappaH});$$

$$\sum m_{B} = 0; \quad q \cdot 4 \cdot 6 + M_{1} - R_{A} \cdot 6 - M_{2} + F_{1} \cdot 2 + F_{2} \cdot 1 = 0;$$

$$R_{A} = \frac{10 - 20 + 8 \cdot 4 \cdot 6 + 10 \cdot 2 + 20 \cdot 1}{6} = 37 \,(\text{\kappaH}).$$

Проверка:

$$\sum y = 0; \quad F_1 + q \cdot 4 - R_A - R_B - F_2 = 0; \quad 10 + 8 \cdot 4 - 37 + 15 - 20 = 57 - 57 = 0,$$

следовательно, опорные реакции заданной балки определены верно.

При построении эпюр ВСФ будем перемещать сечение слева на право в соответствии с выбранной системой координат. В этом случае направление скачков на эпюре поперечных сил Q_y соответствует направлению действия сосредоточенных сил. Направление приращения эпюры Q_y от действия равномерно распределенной нагрузки совпадает с направлением их действия. Знак приращения эпюры изгибающих моментов M_x соответствует знакам площади эпюры Q_y .

Начинаем построение с эпюры поперечных сил Q_y . В крайней левой точке балки отсутствует сосредоточенная сила, следовательно, скачок на эпюре Q_y равен нулю. В пределах первого грузового участка действует равномерно распределенная нагрузка интенсивностью $q_y=8$ кН/м. Приращение эпюры Q_y равно ее равнодействующей $R = 8 \cdot 2 = 16$ кН и направлено вниз. Следовательно, ордината эпюры на правой границе грузового участка равна $Q_y = -16$ кН.

На границе между первым и вторым грузовыми участками действует сосредоточенная сила $R_A = 37$ кН. На эпюре Q_y имеется скачок вверх на величину этой силы и ордината эпюры на левой границе второго грузового участка равна $Q_y = 21$ кН. В пределах второго грузового участка также действует равномерно распределенная нагрузка интенсивностью $q_y=8$ кН/м. Приращение эпюры Q_y равно ее равнодействующей $R = 8 \cdot 2 = 16$ кН и направлено вниз. Следовательно, ордината эпюры на правой границе грузового участка равна $Q_y = 21 - 16 = 5$ кН.

Рисунок 3.1 – Построение эпюр ВСВ без использования уравнений статики

На границе второго и третьего грузового участка нет сосредоточенной силы, следовательно, скачка на эпюре Q_y не будет. В пределах третьего участка равномерно распределенная нагрузка отсутствует, поэтому приращение эпюры равно нулю и $Q_y = 5 \text{ кH} = const.$

На границе третьего и четвертого грузового участка действует сосредоточенная сила $F_1 = 10$ кH, направленная сверху вниз, следовательно, на эпюре Q_y скачок направлен вниз. Ордината эпюры на левой границе четвертого грузового участка равна $Q_y = 5 - 10 = -5$ кH. В пределах четвертого грузового участка равномерно распределенная нагрузка отсутствует, поэтому приращение эпюры равно нулю и $Q_y = -5$ кH = *const*.

На границе четвертого и пятого грузового участка приложена сосредоточенная сила $R_{_B} = -15$ кН, действующая сверху вниз. Следовательно, на эпюре Q_y скачок направлен вниз. Ордината эпюры на левой границе пятого грузового участка равна $Q_y = -5 - 15 = -20$ кН. В пределах этого участка равномерно распределенная нагрузка отсутствует, поэтому приращение эпюры равно нулю и $Q_y = -20$ кН = const. В крайней правой точке рассматриваемой балки приложена сосредоточенная сила $F_2 = 20$ кН, действующая снизу вверх. На эпюре Q_y имеется скачок от $Q_y = -20$ кН до нуля. Таким образом, при построении эпюры Q_y мы вышли из нуля и в ноль пришли, следовательно, эпюра поперечных сил построена верно.

Выполняем построение эпюры изгибающих моментов M_x . В крайней левой точке балки действует сосредоточенный момент $M_1 = 10$ кНм, растягивающий верхние волокна. Следовательно, на эпюре имеется скачок от нуля до ординаты $M_x = -10$ кНм. Указанный скачок должен быть отложен вверх. В пределах первого участка приращение эпюры M_x равно площади эпюры Q_y : $S_{Q_y} = -16 \cdot 2/2 = -16$ кНм. Ордината эпюры на правой границе первого грузового участка равна $M_x = -10 - 16 = -26$ кНм. Эта ордината должна быть отложена вверх. Эпюра моментов будет изменяться по квадратной параболе, выпуклость которой направлена вниз – в сторону действия распределенной нагрузки. В пределах данного участка эпюра Q_y не пересекает нулевую линию, следовательно, эпюра M_y экстремума не имеет.

На границе первого и второго грузового участка отсутствует сосредоточенный момент, следовательно, скачка на эпюре M_x нет. В пределах второго грузового участка приращение эпюры M_x равно площади эпюры Q_y : $S_{Q_y} = (21+5) \cdot 2/2 = 26$ кНм. Ордината эпюры на правой границе второго грузового участка равна $M_x = -26 + 26 = 0$. Эпюра моментов будет изменяться по квадратной параболе, выпуклость которой направлена вниз – в сторону действия распределенной нагрузки. В пределах второго грузового

участка эпюра Q_y не пересекает нулевую линию, следовательно, квадратная парабола экстремума не имеет.

На границе второго и третьего грузового участка действует сосредоточенный момент $M_2 = 20$ кНм, растягивающий нижние волокна. Следовательно, на эпюре имеется скачок от нуля до ординаты $M_x = 20$ кНм. Указанный скачок должен быть отложен вниз. В пределах третьего участка приращение эпюры M_x равно площади эпюры Q_y : $S_{Q_y} = 5 \cdot 2 = 10$ кНм. Ордината эпюры M_x на правой границе участка равна $M_x = 20 + 10 = 30$ кНм.

На границе третьего и четвертого грузового участка нет сосредоточенных моментов, следовательно, скачок на эпюре M_x отсутствует. В пределах четвертого грузового участка приращение эпюры M_x равно площади эпюры Q_y : $S_{Q_y} = -5 \cdot 2 = -10$ кНм. Ордината эпюры изгибающих моментов на правой границе четвертого участка равна $M_x = 30 - 10 = 20$ кНм.

На границе четвертого и пятого грузового участка нет сосредоточенных моментов, следовательно, скачок на эпюре M_x отсутствует. В пределах пятого грузового участка приращение эпюры M_x равно площади эпюры Q_y : $S_{Q_y} = -20 \cdot I = -20$ кНм. Ордината эпюры изгибающих моментов на правой границе этого участка равна $M_x = 20 - 20 = 0$, что соответствует загружению балки. Как видно из рисунка в правой крайней точке балки изгибающий момент отсутствует.

4 ЧАСТНЫЕ СЛУЧАИ ЗАГРУЖЕНИЯ БАЛОК ВНЕШНЕЙ НАГРУЗКОЙ

4.1 ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ ПРИ ЗАГРУЖЕНИИ БАЛКИ СИММЕТРИЧНОЙ НАГРУЗКОЙ

В инженерной практике достаточно часто встречаются балки, загруженные симметричной внешней нагрузкой. Эпюры внутренних силовых факторов в таких балках имеют некоторые характерные особенности. Рассмотрим этот случай загружения балки внешней нагрузкой на следующем примере (рис. 4.1). Определяем величину опорных реакций заданной балки.

$$\begin{split} \sum m_{A} &= 0; \quad -M + M - F \cdot 2 + F \cdot 8 + R_{B} \cdot 6 - q \cdot 4 \cdot 6 = 0; \\ R_{B} &= \frac{8 \cdot 4 \cdot 6 + 10 - 10 + 10 \cdot 2 - 10 \cdot 8}{6} = 22 \, (\text{\kappaH}); \\ \sum m_{B} &= 0; \quad -M + M - F \cdot 2 + F \cdot 8 + R_{A} \cdot 6 - q \cdot 4 \cdot 6 = 0; \\ R_{A} &= \frac{8 \cdot 4 \cdot 6 + 10 - 10 + 10 \cdot 2 - 10 \cdot 8}{6} = 22 \, (\text{\kappaH}). \end{split}$$

Проверка:

$$\sum y = 0; \quad -F + q \cdot 4 - R_{A} - R_{B} - F + q \cdot 4 = 0;$$

-10 + 8 \cdot 4 - 22 - 22 - 10 + 8 \cdot 4 = 64 - 64 = 0,

следовательно, опорные реакции определены верно.

Строим эпюры внутренних силовых факторов в заданной балке, используя любой из способов их построения, приведенных ранее.

Рисунок 4.1 – Эпюры ВСФ в балке, загруженной симметричной нагрузкой

После построения эпюр внутренних силовых факторов в заданной балке можно сделать следующие выводы. Для балки, загруженной симметричной системой внешних сил опорные реакции равны половине равнодействующей внешних сил и направлены в противоположную сторону. При этом эпюра поперечных сил Q_y всегда будет кососимметричной, а эпюра изгибающих моментов M_x – симметричной.

4.2 ЭПЮРЫ ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ ПРИ ЗАГРУЖЕНИИ БАЛКИ КОСОСИММЕТРИЧНОЙ НАГРУЗКОЙ

Рассмотрим случай загружения балки внешней кососимметричной нагрузкой (рис. 4.2). Определяем величину опорных реакций заданной балки.

Рисунок 4.2 – Эпюры ВСФ в балке, загруженной кососимметричной нагрузкой

Определяем величину опорных реакций балки.

$$\begin{split} \sum m_{A} &= 0; \quad -M + F \cdot 8 - M + F \cdot 2 + R_{B} \cdot 6 + q \cdot 2 \cdot 5 - q \cdot 2^{2} / 2 = 0, \\ R_{B} &= \frac{8 \cdot 2^{2} / 2 - 8 \cdot 2 \cdot 5 + 10 + 10 - 10 \cdot 2 - 10 \cdot 8}{6} = -24 \, (\text{\kappaH}); \\ \sum m_{B} &= 0; \quad M - F \cdot 8 + M - F \cdot 2 + R_{A} \cdot 6 - q \cdot 2 \cdot 5 + q \cdot 2^{2} / 2 = 0; \\ R_{A} &= \frac{8 \cdot 2 \cdot 5 - 8 \cdot 2^{2} / 2 - 10 - 10 + 10 \cdot 2 + 10 \cdot 8}{6} = 24 \, (\text{\kappaH}). \end{split}$$

Проверка:

$$\sum y = 0; \quad F + q \cdot 2 - R_{A} - R_{B} - F - q \cdot 2 = 0;$$

10 + 8 \cdot 2 - 24 + 24 - 10 - 8 \cdot 2 = 50 - 50 = 0,

следовательно, опорные реакции заданной балки определены верно.

Строим эпюры внутренних силовых факторов в заданной балке, используя любой из способов их построения, приведенных ранее.

После построения эпюр внутренних силовых факторов в заданной балке можно сделать следующие выводы. Для балки, загруженной кососимметричной системой внешних сил опорные реакции равны по абсолютной величине, но противоположны по знаку. При этом эпюра поперечных сил Q_y всегда будет симметричной, а эпюра изгибающих моментов M_x – кососимметричной.

4.3 ЗАГРУЖЕНИЕ БАЛКИ РАСПРЕДЕЛЕННОЙ НАГРУЗКОЙ, ИЗМЕНЯЮЩЕЙСЯ ПО ЛИНЕЙНОМУ ЗАКОНУ

В некоторых случаях на строительные конструкции действуют распределенные нагрузки, изменяющиеся по линейному закону. Рассмотрим пример построения эпюр внутренних силовых факторов при загружении балок указанными нагрузками. При построении эпюр будем пользоваться методом сечений.

Определяем опорные реакции двухопорной балки (рис. 4.3)

$$\sum m_{A} = 0; \quad R_{B} \cdot 6 + M + F \cdot 2 - q \cdot \frac{6}{2} \cdot \frac{6}{3} = 0;$$

$$R_{B} = \frac{8 \cdot 3 \cdot 2 - 10 \cdot 2 - 20}{6} = 1,333 \,(\text{kH});$$

$$\sum m_{B} = 0; R_{A} \cdot 6 - M + F \cdot 4 - q \cdot \frac{6}{2} \cdot \frac{2 \cdot 6}{3} = 0;$$

$$R_{B} = \frac{8 \cdot 3 \cdot 4 - 10 \cdot 4 + 20}{6} = 12,667 \,(\text{kH}).$$

6 6

Проверка:

$$\sum y = 0; \qquad R_A + R_B + F - q\frac{6}{2} = 0;$$

12,667 + 1,333 + 10 - 8 $\frac{6}{2}$ = 24 - 24 = 0.

Начало системы координат *zOy* помещаем в крайней правой точке балки (рис. 4.3). Запишем закон изменения интенсивности распределенной нагрузки в выбранной системе координат:

$$q(z) = q \frac{z}{6} ext{ KH/M}.$$

Рисунок 4.3 – Эпюры ВСФ в балке, загруженной распределенной нагрузкой, изменяющейся по линейному закону

Рассмотрим первый грузовой участок балки. Границы изменения координаты $0 \le z_1 \le 4$ м. Запишем выражения для внутренних силовых факторов для первого грузового участка:

$$\sum y = 0; \quad R_{B} + Q_{y} - q \frac{z_{I}}{6} \cdot \frac{z_{I}}{2} = 0; \quad Q_{y} = q \frac{z_{I}^{2}}{12} - R_{B};$$

$$\sum m_{a} = 0; \quad M_{x} - M - R_{B} \cdot z_{I} + q \frac{z_{I}}{6} \cdot \frac{z_{I}}{2} \cdot \frac{z_{I}}{3} = 0; \quad M_{x} = M + R_{B} \cdot z_{I} - q \frac{z_{I}^{3}}{36}.$$

Как следует из полученных выражений, эпюра поперечных сил Q_y на рассматриваемом участке изменяется по квадратной параболе, а эпюра изгибающих моментов M_x – по кубической параболе. Вычисляем величину внутренних силовых факторов при следующих значениях координаты z_1 :

$$z_1 = 0$$
; $Q_y = -1,333 \text{ kH}$; $M_x = 20,000 \text{ kHm}$;
 $z_1 = 1 \text{ m}$; $Q_y = -0,667 \text{ kH}$; $M_x = 21,111 \text{ kHm}$;
 $z_1 = 2 \text{ m}$; $Q_y = 1,333 \text{ kH}$; $M_x = 20,888 \text{ kHm}$;
 $z_1 = 3 \text{ m}$; $Q_y = 4,667 \text{ kH}$; $M_x = 18,000 \text{ kHm}$;
 $z_1 = 4 \text{ m}$; $Q_y = 9,333 \text{ kH}$; $M_x = 11,110 \text{ kHm}$.

Определяем значение координаты z_1 , при которой поперечная сила Q_y равна нулю:

$$8\frac{z_1^2}{12} - 1,333 = 0; \ z_1 = \sqrt{\frac{1,333 \cdot 12}{8}} = 1,414$$
 m.

Находим значения внутренних силовых факторов при $z_1 = 1,414$ м:

$$Q_v = 0; M_x = 21,257$$
 кНм.

По полученным значениям строим эпюры внутренних силовых факторов на первом грузовом участке.

 $q(z) \qquad M=20 \ \kappa H M \qquad y$ $z \qquad B \qquad B \qquad K H M \qquad K = 1,333 \ \kappa H \qquad K H \qquad K = 1,333 \ \kappa H \qquad K H \qquad K = 1,333 \ \kappa H \qquad K H \qquad K = 1,333 \ \kappa H \qquad K H \qquad K = 1,333 \ \kappa H \qquad K = 1,$

Рассмотрим второй грузовой участок заданной балки. Границы изменения текущей координаты $4 \le z_2 \le 6$ м. Используя уравнения равновесия статики, запишем выражения для внутренних силовых факторов для второго грузового участка:

$$\sum y = 0; R_{B} + Q_{y} - q \frac{z_{2}}{6} \cdot \frac{z_{2}}{2} + F = 0; Q_{y} = q \frac{z_{2}^{2}}{12} - R_{B} - F;$$

$$\sum m_{a} = 0; M_{x} - M - R_{B} \cdot z_{2} + q \frac{z_{2}}{6} \cdot \frac{z_{2}}{2} \cdot \frac{z_{2}}{3} - F(z_{2} - 1) = 0;$$

$$M_{x} = M + R_{B} \cdot z_{2} + F(z_{2} - 1) - q \frac{z_{2}^{3}}{36}.$$

Как следует из полученных выражений, эпюра поперечных сил Q_y на втором грузовом участке изменяется по квадратной параболе, а эпюра изгибающих моментов M_y – по кубической параболе.

$$z_2 = 4$$
 м; $Q_y = -0,667$ кН; $M_x = 11,110$ кНм;
 $z_2 = 5$ м; $Q_y = 5,333$ кН; $M_x = 8,887$ кНм;
 $z_2 = 6$ м; $Q_y = 12,667$ кН; $M_x = 0$ кНм.

Определяем значение координаты z_2 , при которой поперечная сила Q_y равна нулю.

$$8\frac{z_2^2}{12} - 1,333 - 10 = 0$$
; $z_2 = \sqrt{\frac{11,333 \cdot 12}{8}} = 4,123$ M.

Находим значения внутренних силовых факторов при $z_2 = 4,123$ м:

$$Q_{y} = 0; M_{x} = 11,150$$
кНм.

По полученным значениям строим эпюры внутренних силовых факторов на втором грузовом участке. Окончательный вид эпюр поперечных сил Q_y и изгибающих моментов M_x показан на рис. 4.3.

В инженерной практике иногда возникает необходимость решить обратную задачу – определить загружение балки и построить эпюру поперечных сил Q_y по известной эпюре изгибающих моментов M_x . Рассмотрим эпюру M_x , показанную на рис. 4.4.

Рисунок 4.4 – К решению обратной задачи

На пятом грузовом участке эпюра M_x является постоянной, тогда эпюра Q_y должна равняться нулю. Следовательно, на пятом грузовом участке к балке не приложены распределенные нагрузки или сосредоточенные силы. Скачок вверх на эпюре изгибающих моментов соответствует действию сосредоточенного момента $M_2 = qa^2$, следовательно, к крайней правой точке балки приложен внешний момент, действующий по часовой стрелке.

Приращение изгибающего момента на четвертом грузовом участке равно $\Delta M_{x} = qa^{2} + 2qa^{2} = 3qa^{2}$. Знак «+» приращения момента соответствует стремлению эпюры M_x в положительную область (в сторону нижних растянутых волокон). При перемещении сечения справа на лево приращение изгибающего момента ΔM_x , что соответствует площади эпюры Q_y на том же грузовом участке, следовательно, $S_{Q_v} = -3qa^2$. На рассматриваемом грузовом участке эпюра M_x изменяется по линейному закону, тогда эпюра Q_{ν} должна быть постоянной. При длине грузового участка равной *a* ордичасти прямоугольной эпюры поперечных ната сил равна $Q_y = -qa^2 / a = -qa$. Скачок вниз на эпюре поперечных сил соответствует действию сосредоточенной силы, следовательно, к крайней левой точке балки приложена сила $F_{1} = qa$, действующая сверху вниз.

Приращение изгибающего момента на первом грузовом участке равно $\Delta M_x = 0 - qa^2 = -qa^2$, что соответствует площади эпюры Q_y на том же грузовом участке, следовательно, $S_{Q_y} = -qa^2$. На рассматриваемом грузовом участке эпюра M_x изменяется по линейному закону, тогда эпюра Q_y должна быть постоянной. При длине грузового участка равной *a* ордината прямоугольной части эпюры поперечных сил равна $Q_y = -qa^2 / a = -qa$. Скачок вниз на эпюре поперечных сил соответствует действию сосредоточенной силы, следовательно, к крайней левой точке балки приложена сила $F_1 = qa$, действующая сверху вниз.